K-Theory of Crepant Resolutions of Complex Orbifolds with SU(2) Singularities
نویسنده
چکیده
We show that if Q is a closed, reduced, complex orbifold of dimension n such that every local group acts as a subgroup of SU(2) < SU(n), then the K-theory of the unique crepant resolution of Q is isomorphic to the orbifold K-theory of Q.
منابع مشابه
Wall-crossings in Toric Gromov–witten Theory Ii: Local Examples
In this paper we analyze six examples of birational transformations between toric orbifolds: three crepant resolutions, two crepant partial resolutions, and a flop. We study the effect of these transformations on genus-zero Gromov–Witten invariants, proving the Coates–Corti–Iritani–Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepa...
متن کامل0 On Hypersurface Quotient Singularity of Dimension 4
We consider geometrical problems on Gorenstein hypersurface orbifolds of dimension n ≥ 4 through the theory of Hilbert scheme of group orbits. For a linear special group G acting on C n , we study the G-Hilbert scheme, Hilb(C n ), and crepant resolutions of C n /G for G=the A-type abelian group Ar(n). For n = 4, we obtain the explicit structure of Hilb r(C 4 ). The crepant resolutions of C 4 /G...
متن کاملOn the Crepant Resolution Conjecture in the Local Case
In this paper we analyze four examples of birational transformations between local Calabi– Yau 3-folds: two crepant resolutions, a crepant partial resolution, and a flop. We study the effect of these transformations on genus-zero Gromov–Witten invariants, proving the Coates–Corti–Iritani– Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of th...
متن کاملOrbifolds and Finite Group Representations
We present our recent understanding on resolutions of Gorenstein orbifolds, which involves the finite group representation theory. We concern only the quotient singularity of hypersurface type. The abelian group Ar (n) for A-type hypersurface quotient singularity of dimension n is introduced. For n = 4, the structure of Hilbert scheme of group orbits and crepant resolutions of Ar (4)-singularit...
متن کاملOn crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities
An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C/G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and suf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008